Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Glia ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629411

RESUMO

The disruption of astrocytic catabolic processes contributes to the impairment of amyloid-ß (Aß) clearance, neuroinflammatory signaling, and the loss of synaptic contacts in late-onset Alzheimer's disease (AD). While it is known that the posttranslational modifications of Aß have significant implications on biophysical properties of the peptides, their consequences for clearance impairment are not well understood. It was previously shown that N-terminally pyroglutamylated Aß3(pE)-42, a significant constituent of amyloid plaques, is efficiently taken up by astrocytes, leading to the release of pro-inflammatory cytokine tumor necrosis factor α and synapse loss. Here we report that Aß3(pE)-42, but not Aß1-42, gradually accumulates within the astrocytic endolysosomal system, disrupting this catabolic pathway and inducing the formation of heteromorphous vacuoles. This accumulation alters lysosomal kinetics, lysosome-dependent calcium signaling, and upregulates the lysosomal stress response. These changes correlate with the upregulation of glial fibrillary acidic protein (GFAP) and increased activity of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Treatment with a lysosomal protease inhibitor, E-64, rescues GFAP upregulation, NF-κB activation, and synapse loss, indicating that abnormal lysosomal protease activity is upstream of pro-inflammatory signaling and related synapse loss. Collectively, our data suggest that Aß3(pE)-42-induced disruption of the astrocytic endolysosomal system leads to cytoplasmic leakage of lysosomal proteases, promoting pro-inflammatory signaling and synapse loss, hallmarks of AD-pathology.

2.
Neurol Neuroimmunol Neuroinflamm ; 11(3): e200233, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38588479

RESUMO

OBJECTIVES: Histiocytic disorders are pathologic expansions of myeloid cells in multiple organs, including the CNS. They share activation of the MAP kinase pathway due to either BRAFV600E variant or other variants in the RAS-RAF-MEK-ERK pathway. The rarity and heterogeneity of the disease only enable therapy through pathophysiologic considerations. METHODS: We present 2 histiocytosis cases without BRAF sequence variants that affect the CNS, one with Erdheim-Chester disease and the other with an unspecified histiocytosis, and their diagnostic and therapeutic challenges. RESULTS: In both cases, comprehensive analysis of the RAS-RAF-MEK-ERK signaling pathway secured the diagnosis. Treatment with the MEK inhibitor cobimetinib brought the disease to a complete halt. However, side effects such as thrombosis and serous macular edema made it necessary to reduce cobimetinib dosage. Low-dose cobimetinib maintenance medication was successful in preventing recurrence of histiocytic disease. DISCUSSION: CNS involvement of histiocytic disorders can lead to detrimental neurologic symptoms. MEK inhibitors are effective treatment options for some of these patients. Since side effects are common, according to our cases we propose a low-dose treatment of 20 mg per day to balance treatment effects with side effects. CLASSIFICATION OF EVIDENCE: This case report provides Class IV evidence. This is a single observational study without controls.


Assuntos
Azetidinas , Histiocitose , Piperidinas , Proteínas Proto-Oncogênicas B-raf , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Mutação , Histiocitose/tratamento farmacológico , Histiocitose/induzido quimicamente , Histiocitose/patologia , Inibidores de Proteínas Quinases/efeitos adversos , Quinases de Proteína Quinase Ativadas por Mitógeno
3.
Med ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38554710

RESUMO

BACKGROUND: Progressive multiple sclerosis (MS) is characterized by compartmentalized smoldering neuroinflammation caused by the proliferation of immune cells residing in the central nervous system (CNS), including B cells. Although inflammatory activity can be prevented by immunomodulatory therapies during early disease, such therapies typically fail to halt disease progression. CD19 chimeric antigen receptor (CAR)-T cell therapies have revolutionized the field of hematologic malignancies. Although generally considered efficacious, serious adverse events associated with CAR-T cell therapies such as immune effector cell-associated neurotoxicity syndrome (ICANS) have been observed. Successful use of CD19 CAR-T cells in rheumatic diseases like systemic lupus erythematosus and neuroimmunological diseases like myasthenia gravis have recently been observed, suggesting possible application in other autoimmune diseases. METHODS: Here, we report the first individual treatment with a fully human CD19 CAR-T cell therapy (KYV-101) in two patients with progressive MS. FINDINGS: CD19 CAR-T cell administration resulted in acceptable safety profiles for both patients. No ICANS was observed despite detection of CD19 CAR-T cells in the cerebrospinal fluid. In case 1, intrathecal antibody production in the cerebrospinal fluid decreased notably after CAR-T cell infusion and was sustained through day 64. CONCLUSIONS: CD19 CAR-T cell administration in progressive MS resulted in an acceptable safety profile. CAR-T cell presence and expansion were observed in the cerebrospinal fluid without clinical signs of neurotoxicity, which, along with intrathecal antibody reduction, indicates expansion-dependent effects of CAR-T cells on CD19+ target cells in the CNS. Larger clinical studies assessing CD19 CAR-T cells in MS are warranted. FUNDING: Both individual treatments as well the generated data were not based on external funding.

4.
Mol Neurodegener ; 19(1): 2, 2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38185677

RESUMO

BACKGROUND: Antibody-based immunoassays have enabled quantification of very low concentrations of phosphorylated tau (p-tau) protein forms in cerebrospinal fluid (CSF), aiding in the diagnosis of AD. Mass spectrometry enables absolute quantification of multiple p-tau variants within a single run. The goal of this study was to compare the performance of mass spectrometry assessments of p-tau181, p-tau217 and p-tau231 with established immunoassay techniques. METHODS: We measured p-tau181, p-tau217 and p-tau231 concentrations in CSF from 173 participants from the TRIAD cohort and 394 participants from the BioFINDER-2 cohort using both mass spectrometry and immunoassay methods. All subjects were clinically evaluated by dementia specialists and had amyloid-PET and tau-PET assessments. Bland-Altman analyses evaluated the agreement between immunoassay and mass spectrometry p-tau181, p-tau217 and p-tau231. P-tau associations with amyloid-PET and tau-PET uptake were also compared. Receiver Operating Characteristic (ROC) analyses compared the performance of mass spectrometry and immunoassays p-tau concentrations to identify amyloid-PET positivity. RESULTS: Mass spectrometry and immunoassays of p-tau217 were highly comparable in terms of diagnostic performance, between-group effect sizes and associations with PET biomarkers. In contrast, p-tau181 and p-tau231 concentrations measured using antibody-free mass spectrometry had lower performance compared with immunoassays. CONCLUSIONS: Our results suggest that while similar overall, immunoassay-based p-tau biomarkers are slightly superior to antibody-free mass spectrometry-based p-tau biomarkers. Future work is needed to determine whether the potential to evaluate multiple biomarkers within a single run offsets the slightly lower performance of antibody-free mass spectrometry-based p-tau quantification.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico , Proteínas Amiloidogênicas , Imunoensaio , Espectrometria de Massas , Biomarcadores
5.
Mult Scler Relat Disord ; 82: 105414, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176284

RESUMO

BACKGROUND: Autologous hematopoietic stem cell transplantation (aHSCT) exhibits promising results for multiple sclerosis (MS) in the short term. We investigated the long-term outcome differences in disease progression and cognitive impairment after aHSCT and alemtuzumab treatment. METHODS: 20 patients receiving aHSCT and 21 patients treated with alemtuzumab between 2007 and 2020 were included in this monocentric observational cohort study. The primary objective was to compare the outcome of both groups with regards to achieving No Evidence of Disease Activity (NEDA-3), defined by the absence of relapses, EDSS progression, and MRI activity. Secondary endpoints in the study included the assessment of neurocognitive functioning, quality of life (QoL), Multiple Sclerosis Functional Composite (MSFC), and EDSS improvement. RESULTS: Baseline characteristics between both groups were comparable, except for a longer disease duration in the alemtuzumab group of 11.3 years compared to 5.4 years in aHSCT-treated patients (p = 0.002) and a longer mean follow-up time in the aHSCT cohort of 9.0 (range 2.8-15.7) years compared to 5.9 years (range 0.9-9.2) in alemtuzumab patients. NEDA-3 was more frequently observed in the aHSCT group with 75.0 % and 55.0 % at five and 10 years, respectively, than in the alemtuzumab group with only 40.0 % at five years (p = 0.012). Relapse free survival was higher in the aHSCT group (p < 0.001). None of the aHSCT-treated patients showed new T2-lesions six months after therapy initiation until the end of the observational period in contrast to 35.0 % of the alemtuzumab-treated patients showing new T2-lesions (95 %CI 14.2-98.9, p = 0.002). aHSCT-treated patients showed significantly improved cognitive performance in five out of 12 cognitive tests whereas alemtuzumab treated patients deteriorated in four out of 12 tests. Quality of life remained on a constant level for up to 10 years in patients receiving aHSCT with improved scores for the subscale fatigue (p = 0.013). CONCLUSION: aHSCT seems to be superior to alemtuzumab in maintaining long-term NEDA-3 status, improving cognition and stabilizing quality of life for up to 10 years.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Humanos , Esclerose Múltipla/tratamento farmacológico , Alemtuzumab/efeitos adversos , Qualidade de Vida , Resultado do Tratamento , Transplante de Células-Tronco Hematopoéticas/métodos , Cognição , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico
6.
Alzheimers Dement ; 20(2): 1166-1174, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37920945

RESUMO

INTRODUCTION: We set out to identify tau PET-positive (A+T+) individuals among amyloid-beta (Aß) positive participants using plasma biomarkers. METHODS: In this cross-sectional study we assessed 234 participants across the AD continuum who were evaluated by amyloid PET with [18 F]AZD4694 and tau-PET with [18 F]MK6240 and measured plasma levels of total tau, pTau-181, pTau-217, pTau-231, and N-terminal tau (NTA-tau). We evaluated the performances of plasma biomarkers to predict tau positivity in Aß+ individuals. RESULTS: Highest associations with tau positivity in Aß+ individuals were found for plasma pTau-217 (AUC [CI95% ] = 0.89 [0.82, 0.96]) and NTA-tau (AUC [CI95% ] = 0.88 [0.91, 0.95]). Combining pTau-217 and NTA-tau resulted in the strongest agreement (Cohen's Kappa = 0.74, CI95%  = 0.57/0.90, sensitivity = 92%, specificity = 81%) with PET for classifying tau positivity. DISCUSSION: The potential for identifying tau accumulation in later Braak stages will be useful for patient stratification and prognostication in treatment trials and in clinical practice. HIGHLIGHTS: We found that in a cohort without pre-selection pTau-181, pTau-217, and NTA-tau showed the highest association with tau PET positivity. We found that in Aß+ individuals pTau-217 and NTA-tau showed the highest association with tau PET positivity. Combining pTau-217 and NTA-tau resulted in the strongest agreement with the tau PET-based classification.


Assuntos
Doença de Alzheimer , Humanos , Proteínas tau , Estudos Transversais , Peptídeos beta-Amiloides , Biomarcadores , Tomografia por Emissão de Pósitrons
7.
Front Immunol ; 14: 1273837, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38077336

RESUMO

Introduction: The cyclic nucleotide cyclic adenosine monophosphate (cAMP) is a ubiquitous second messenger, which is known to play an important anti-inflammatory role. Astrocytes in the central nervous system (CNS) can modulate inflammation but little is known about the significance of cAMP in their function. Methods: We investigated cAMP dynamics in mouse olfactory bulb astrocytes in brain slices prepared from healthy and experimental autoimmune encephalomyelitis (EAE) mice. Results: The purinergic receptor ligands adenosine and adenosine triphosphate (ATP) both induced transient increases in cAMP in astrocytes expressing the genetically encoded cAMP sensor Flamindo2. The A2A receptor antagonist ZM241385 inhibited the responses. Similar transient increases in astrocytic cAMP occurred when olfactory receptor neurons were stimulated electrically, resulting in ATP release from the stimulated axons that increased cAMP, again via A2A receptors. Notably, A2A-mediated responses to ATP and adenosine were not different in EAE mice as compared to healthy mice. Discussion: Our results indicate that ATP, synaptically released by afferent axons in the olfactory bulb, is degraded to adenosine that acts on A2A receptors in astrocytes, thereby increasing the cytosolic cAMP concentration. However, this pathway is not altered in the olfactory bulb of EAE mice.


Assuntos
Encefalomielite Autoimune Experimental , Camundongos , Animais , Astrócitos/metabolismo , Bulbo Olfatório/metabolismo , AMP Cíclico/metabolismo , Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Receptores Purinérgicos P1/metabolismo
8.
Nat Commun ; 14(1): 7372, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968302

RESUMO

Mucosal-associated invariant T (MAIT) cells have been implicated in various inflammatory diseases of barrier organs, but so far, their role in kidney disease is unclear. Here we report that MAIT cells that recognize their prototypical ligand, the vitamin B2 intermediate 5-OP-RU presented by MR1, reside in human and mouse kidneys. Single cell RNAseq analysis reveals several intrarenal MAIT subsets, and one, carrying the genetic fingerprint of tissue-resident MAIT17 cells, is activated and expanded in a murine model of crescentic glomerulonephritis (cGN). An equivalent subset is also present in kidney biopsies of patients with anti-neutrophil cytoplasmatic antibody (ANCA)-associated cGN. MAIT cell-deficient MR1 mice show aggravated disease, whereas B6-MAITCAST mice, harboring higher MAIT cell numbers, are protected from cGN. The expanded MAIT17 cells express anti-inflammatory mediators known to suppress cGN, such as CTLA-4, PD-1, and TGF-ß. Interactome analysis predicts CXCR6 - CXCL16-mediated cross-talk with renal mononuclear phagocytes, known to drive cGN progression. In line, we find that cGN is aggravated upon CXCL16 blockade. Finally, we present an optimized 5-OP-RU synthesis method which we apply to attenuating cGN in mice. In summary, we propose that CXCR6+ MAIT cells might play a protective role in cGN, implicating them as a potential target for anti-inflammatory therapies.


Assuntos
Nefropatias , Células T Invariantes Associadas à Mucosa , Humanos , Animais , Camundongos , Células Mieloides/metabolismo , Nefropatias/metabolismo , Anti-Inflamatórios/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo
9.
Sci Adv ; 9(47): eadi6855, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-38000031

RESUMO

Neuroinflammation causes neuronal injury in multiple sclerosis (MS) and other neurological diseases. MicroRNAs (miRNAs) are important modulators of neuronal stress responses, but knowledge about their contribution to neuronal protection or damage during inflammation is limited. Here, we constructed a regulatory miRNA-mRNA network of inflamed motor neurons by leveraging cell type-specific miRNA and mRNA sequencing of mice undergoing experimental autoimmune encephalomyelitis (EAE). We found robust induction of miR-92a in inflamed spinal cord neurons and identified cytoplasmic polyadenylation element-binding protein 3 (Cpeb3) as a key target of miR-92a-mediated posttranscriptional silencing. We detected CPEB3 repression in inflamed neurons in murine EAE and human MS. Moreover, both miR-92a delivery and Cpeb3 deletion protected neuronal cultures against excitotoxicity. Supporting a detrimental effect of Cpeb3 in vivo, neuron-specific deletion in conditional Cpeb3 knockout animals led to reduced inflammation-induced clinical disability in EAE. Together, we identified a neuroprotective miR-92a-Cpeb3 axis in neuroinflammation that might serve as potential treatment target to limit inflammation-induced neuronal damage.


Assuntos
Encefalomielite Autoimune Experimental , MicroRNAs , Esclerose Múltipla , Humanos , Camundongos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Doenças Neuroinflamatórias , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/metabolismo , Inflamação/genética , Inflamação/metabolismo , Neurônios/metabolismo , RNA Mensageiro/metabolismo , Camundongos Endogâmicos C57BL , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
10.
J Neuroinflammation ; 20(1): 278, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001539

RESUMO

INTRODUCTION: Synaptic loss is closely associated with tau aggregation and microglia activation in later stages of Alzheimer's disease (AD). However, synaptic damage happens early in AD at the very early stages of tau accumulation. It remains unclear whether microglia activation independently causes synaptic cleavage before tau aggregation appears. METHODS: We investigated 104 participants across the AD continuum by measuring 14-3-3 zeta/delta ([Formula: see text]) as a cerebrospinal fluid biomarker for synaptic degradation, and fluid and imaging biomarkers of tau, amyloidosis, astrogliosis, neurodegeneration, and inflammation. We performed correlation analyses in cognitively unimpaired and impaired participants and used structural equation models to estimate the impact of microglia activation on synaptic injury in different disease stages. RESULTS: 14-3-3 [Formula: see text] was increased in participants with amyloid pathology at the early stages of tau aggregation before hippocampal volume loss was detectable. 14-3-3 [Formula: see text] correlated with amyloidosis and tau load in all participants but only with biomarkers of neurodegeneration and memory deficits in cognitively unimpaired participants. This early synaptic damage was independently mediated by sTREM2. At later disease stages, tau and astrogliosis additionally mediated synaptic loss. CONCLUSIONS: Our results advertise that sTREM2 is mediating synaptic injury at the early stages of tau accumulation, underlining the importance of microglia activation for AD disease propagation.


Assuntos
Doença de Alzheimer , Amiloidose , Humanos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Gliose , Proteínas tau/metabolismo , Proteínas 14-3-3
12.
Nat Rev Neurol ; 19(11): 688-709, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37857843

RESUMO

Malaria, the most prevalent mosquito-borne infectious disease worldwide, has accompanied humanity for millennia and remains an important public health issue despite advances in its prevention and treatment. Most infections are asymptomatic, but a small percentage of individuals with a heavy parasite burden develop severe malaria, a group of clinical syndromes attributable to organ dysfunction. Cerebral malaria is an infrequent but life-threatening complication of severe malaria that presents as an acute cerebrovascular encephalopathy characterized by unarousable coma. Despite effective antiparasite drug treatment, 20% of patients with cerebral malaria die from this disease, and many survivors of cerebral malaria have neurocognitive impairment. Thus, an important unmet clinical need is to rapidly identify people with malaria who are at risk of developing cerebral malaria and to develop preventive, adjunctive and neuroprotective treatments for cerebral malaria. This Review describes important advances in the understanding of cerebral malaria over the past two decades and discusses how these mechanistic insights could be translated into new therapies.


Assuntos
Encefalopatias , Malária Cerebral , Animais , Humanos , Malária Cerebral/complicações , Malária Cerebral/tratamento farmacológico , Coma
13.
Mult Scler ; 29(13): 1569-1577, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37880953

RESUMO

BACKGROUND: As exercise exerts neurobiological and immunomodulatory effects, it might also act as a disease-modifying intervention in MS. However, a clear mechanistic link between exercise and disease-modifying effects in MS has yet to be established. OBJECTIVE: Establish recommendations for future mechanistic exercise studies in MS. METHODS: In regular meetings, members of the mechanisms of action group within the MoXFo (Moving eXercise research Forward in MS) initiative evaluated gaps of knowledge and discussed unmet needs in mechanistic MS research. RESULTS: We concluded that biomarkers assessed in translational studies in humans and animals are essential to decipher the underlying mechanisms of exercise in MS. Consequently, we defined clear definitions of different types of biomarkers examined in MS exercise studies and operationalized their use to align with the research question and optimal testing time points. Furthermore, we provide key considerations to improve the rigor of translational studies and defined minimal reporting criteria for animal studies. CONCLUSION: The resulting recommendations are intended to improve the quality of future mechanistic exercise studies in MS and consequently lead to a better understanding of therapeutic approaches.


Assuntos
Esclerose Múltipla , Humanos , Esclerose Múltipla/diagnóstico , Esclerose Múltipla/terapia , Terapia por Exercício/métodos , Exercício Físico , Biomarcadores
14.
Ther Adv Neurol Disord ; 16: 17562864231180730, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37780055

RESUMO

Background: While substantial progress has been made in the development of disease-modifying medications for multiple sclerosis (MS), a high percentage of treated patients still show progression and persistent inflammatory activity. Autologous haematopoietic stem cell transplantation (AHSCT) aims at eliminating a pathogenic immune repertoire through intense short-term immunosuppression that enables subsequent regeneration of a new and healthy immune system to re-establish immune tolerance for a long period of time. A number of mostly open-label, uncontrolled studies conducted over the past 20 years collected about 4000 cases. They uniformly reported high efficacy of AHSCT in controlling MS inflammatory disease activity, more markedly beneficial in relapsing-remitting MS. Immunological studies provided evidence for qualitative immune resetting following AHSCT. These data and improved safety profiles of transplantation procedures spurred interest in using AHSCT as a treatment option for MS. Objective: To develop expert consensus recommendations on AHSCT in Germany and outline a registry study project. Methods: An open call among MS neurologists as well as among experts in stem cell transplantation in Germany started in December 2021 to join a series of virtual meetings. Results: We provide a consensus-based opinion paper authored by 25 experts on the up-to-date optimal use of AHSCT in managing MS based on the Swiss criteria. Current data indicate that patients who are most likely to benefit from AHSCT have relapsing-remitting MS and are young, ambulatory and have high disease activity. Treatment data with AHSCT will be collected within the German REgistry Cohort of autologous haematopoietic stem CeLl trAnsplantation In MS (RECLAIM). Conclusion: Further clinical trials, including registry-based analyses, are urgently needed to better define the patient characteristics, efficacy and safety profile of AHSCT compared with other high-efficacy therapies and to optimally position it as a treatment option in different MS disease stages.


Autologous haematopoietic stem cell transplantation for multiple sclerosis Substantial progress has been made in the development of disease-modifying medications for multiple sclerosis (MS) during the last 20 years. However, in a relevant percentage of patients, the disease cannot completely be contained. Autologous haematopoietic stem cell transplantation (AHSCT) enables rebuilding of a new and healthy immune system and to potentially stop the autoimmune disease process for a long time. A number of studies documenting 4000 cases cumulatively over the past 20 years reported high efficacy of AHSCT in controlling MS inflammatory disease activity. These data and improved safety profiles of the treatment procedures spurred interest in using AHSCT as a treatment option for MS. An open call among MS neurologists as well as among experts in stem cell transplantation in Germany started in December 2021 to join a series of video calls to develop recommendations and outline a registry study project. We provide a consensus-based opinion paper authored by 25 experts on the up-to-date optimal use of AHSCT in managing MS. Current data indicate that patients are most likely to benefit from AHSCT if they are young, ambulatory, with high disease activity, that is, relapses or new magnetic resonance imaging (MRI) lesions. Treatment data with AHSCT will be collected within the German REgistry Cohort of autoLogous haematopoietic stem cell transplantation MS (RECLAIM). Further clinical trials including registry-based analyses and systematic follow-up are urgently needed to better define the optimal patient characteristics as well as the efficacy and safety profile of AHSCT compared with other high-efficacy therapies. These will help to position AHSCT as a treatment option in different MS disease stages.

15.
Sci Adv ; 9(38): eadh1653, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37729408

RESUMO

Migratory dendritic cells (migDCs) continuously patrol tissues and are activated by injury and inflammation. Extracellular adenosine triphosphate (ATP) is released by damaged cells or actively secreted during inflammation and increases migDC motility. However, the underlying molecular mechanisms by which ATP accelerates migDC migration is not understood. Here, we show that migDCs can be distinguished from other DC subsets and immune cells by their expression of the voltage-gated calcium channel subunit ß3 (Cavß3; CACNB3), which exclusively facilitates ATP-dependent migration in vitro and during tissue damage in vivo. By contrast, CACNB3 does not regulate lipopolysaccharide-dependent migration. Mechanistically, CACNB3 regulates ATP-dependent inositol 1,4,5-trisphophate receptor-controlled calcium release from the endoplasmic reticulum. This, in turn, is required for ATP-mediated suppression of adhesion molecules, their detachment, and initiation of migDC migration. Thus, Cacnb3-deficient migDCs have an impaired migration after ATP exposure. In summary, we identified CACNB3 as a master regulator of ATP-dependent migDC migration that controls tissue-specific immunological responses during injury and inflammation.


Assuntos
Trifosfato de Adenosina , Canais de Cálcio , Humanos , Transporte Biológico , Inflamação , Células Dendríticas
16.
J Neurol Neurosurg Psychiatry ; 94(11): 924-933, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37433662

RESUMO

BACKGROUND: Neurodegeneration in multiple sclerosis (MS) affects the visual system but dynamics and pathomechanisms over several years especially in primary progressive MS (PPMS) are not fully understood. METHODS: We assessed longitudinal changes in visual function, retinal neurodegeneration using optical coherence tomography, MRI and serum NfL (sNfL) levels in a prospective PPMS cohort and matched healthy controls. We investigated the changes over time, correlations between outcomes and with loss of visual function. RESULTS: We followed 81 patients with PPMS (mean disease duration 5.9 years) over 2.7 years on average. Retinal nerve fibre layer thickness (RNFL) was reduced in comparison with controls (90.1 vs 97.8 µm; p<0.001). Visual function quantified by the area under the log contrast sensitivity function (AULCSF) remained stable over a continuous loss of RNFL (0.46 µm/year, 95% CI 0.10 to 0.82; p=0.015) up until a mean turning point of 91 µm from which the AULCSF deteriorated. Intereye RNFL asymmetry above 6 µm, suggestive of subclinical optic neuritis, occurred in 15 patients and was related to lower AULCSF but occurred also in 5 out of 44 controls. Patients with an AULCSF progression had a faster increase in Expanded Disability Status Scale (beta=0.17/year, p=0.043). sNfL levels were elevated in patients (12.2 pg/mL vs 8.0 pg/mL, p<0.001), but remained stable during follow-up (beta=-0.14 pg/mL/year, p=0.291) and were not associated with other outcomes. CONCLUSION: Whereas neurodegeneration in the anterior visual system is already present at onset, visual function is not impaired until a certain turning point. sNfL is not correlated with structural or functional impairment in the visual system.


Assuntos
Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla , Neurite Óptica , Humanos , Esclerose Múltipla/complicações , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla Crônica Progressiva/diagnóstico por imagem , Células Ganglionares da Retina , Fibras Nervosas , Estudos Prospectivos , Tomografia de Coerência Óptica/métodos
17.
Acta Neuropathol ; 146(3): 387-394, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37452829

RESUMO

Dysautonomia has substantially impacted acute COVID-19 severity as well as symptom burden after recovery from COVID-19 (long COVID), yet the underlying causes remain unknown. Here, we hypothesized that vagus nerves are affected in COVID-19 which might contribute to autonomic dysfunction. We performed a histopathological characterization of postmortem vagus nerves from COVID-19 patients and controls, and detected SARS-CoV-2 RNA together with inflammatory cell infiltration composed primarily of monocytes. Furthermore, we performed RNA sequencing which revealed a strong inflammatory response of neurons, endothelial cells, and Schwann cells which correlated with SARS-CoV-2 RNA load. Lastly, we screened a clinical cohort of 323 patients to detect a clinical phenotype of vagus nerve affection and found a decreased respiratory rate in non-survivors of critical COVID-19. Our data suggest that SARS-CoV-2 induces vagus nerve inflammation followed by autonomic dysfunction which contributes to critical disease courses and might contribute to dysautonomia observed in long COVID.


Assuntos
COVID-19 , Disautonomias Primárias , Humanos , COVID-19/complicações , SARS-CoV-2 , Síndrome Pós-COVID-19 Aguda , RNA Viral , Células Endoteliais , Inflamação , Disautonomias Primárias/etiologia , Nervo Vago
18.
Brain Commun ; 5(2): fcad092, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37038497

RESUMO

Persistent somatic and neuropsychiatric symptoms have been frequently described in patients after infection with severe acute respiratory syndrome coronavirus 2 even after a benign clinical course of the acute infection during the early phases of the coronavirus severe acute respiratory syndrome coronavirus 2 pandemic and are part of Long COVID. The Omicron variant emerged in November 2021 and has rapidly become predominant due to its high infectivity and suboptimal vaccine cross-protection. The frequency of neuropsychiatric post-acute sequelae after infection with the severe acute respiratory syndrome coronavirus 2 Omicron and adequate vaccination status is not known. Here, we aimed to characterize post-acute symptoms in individuals with asymptomatic or mildly symptomatic breakthrough infection with severe acute respiratory syndrome coronavirus 2. These individuals had either proven infection with the Omicron variant (n = 157) or their infection occurred in 2022 where Omicron was the predominant variant of severe acute respiratory syndrome coronavirus 2 in Germany (n = 107). This monocentric cross-sectional study was conducted at the University Medical Center Hamburg-Eppendorf between 11 February 2022 and 11 April 2022. We employed questionnaires addressing self-reported somatic symptom burden (Somatic Symptom Scale 8) and neuropsychiatric symptoms including mood (Patient Health Questionnaire 2), anxiety (Generalized Anxiety Disorder 7), attention (Mindful Attention Awareness Scale) and fatigue (Fatigue Assessment Scale) in a cohort of hospital workers. Scores were compared between 175 individuals less than 4 weeks after positive testing for severe acute respiratory syndrome coronavirus 2, 88 individuals more than 4 weeks after positive testing and 87 severe acute respiratory syndrome coronavirus 2 uninfected controls. The majority (n = 313; 89.5%) of included individuals were vaccinated at least three times. After recovery from infection, no significant differences in scores assessing neuropsychiatric and somatic symptoms were detected between the three groups (severe acute respiratory syndrome coronavirus 2 uninfected controls, individuals less and more than 4 weeks after positive testing) independent of age, sex, preconditions and vaccination status. In addition, self-reported symptom burden did not significantly correlate with the number of vaccinations against severe acute respiratory syndrome coronavirus 2, time from recovery or the number of infections. Notably, in all three groups, the mean scores for each item of our questionnaire lay below the pathological threshold. Our data show that persistent neuropsychiatric and somatic symptoms after recovery from severe acute respiratory syndrome coronavirus 2 infection in fully vaccinated hospital workers do not occur more frequently than that in uninfected individuals. This will guide healthcare professionals in the clinical management of patients after recovery from breakthrough infections with severe acute respiratory syndrome coronavirus 2.

19.
Autoimmun Rev ; 22(5): 103312, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36924922

RESUMO

More than 10 disease-modifying therapies (DMT) are approved by the European Medicines Agency (EMA) and the US Food and Drug Administration (FDA) for the treatment of multiple sclerosis (MS) and new therapeutic options are on the horizon. Due to different underlying therapeutic mechanisms, a more individualized selection of DMTs in MS is possible, taking into account the patient's current situation. Therefore, concomitant treatment of various comorbid conditions, including autoimmune mediated disorders such as rheumatoid arthritis, should be considered in MS patients. Because the pathomechanisms of autoimmunity partially overlap, DMT could also treat concomitant inflammatory diseases and simplify the patient's treatment. In contrast, the exacerbation and even new occurrence of several autoimmune diseases have been reported as a result of immunomodulatory treatment of MS. To simplify treatment and avoid disease exacerbation, knowledge of the beneficial and adverse effects of DMT in other autoimmune disorders is critical. Therefore, we conducted a literature search and described the beneficial and adverse effects of approved and currently studied DMT in a large number of comorbid autoimmune diseases, including rheumatoid arthritis, ankylosing spondylitis, inflammatory bowel diseases, cutaneous disorders including psoriasis, Sjögren´s syndrome, systemic lupus erythematosus, systemic vasculitis, autoimmune hepatitis, and ocular autoimmune disorders. Our review aims to facilitate the selection of an appropriate DMT in patients with MS and comorbid autoimmune diseases.


Assuntos
Artrite Reumatoide , Doenças Autoimunes , Lúpus Eritematoso Sistêmico , Esclerose Múltipla , Humanos , Esclerose Múltipla/complicações , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/epidemiologia , Autoimunidade , Doenças Autoimunes/complicações , Doenças Autoimunes/tratamento farmacológico
20.
Front Neurol ; 14: 1118369, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36895907

RESUMO

Introduction: Autosomal dominant mutations in the C-terminal part of TREX1 (pVAL235Glyfs*6) result in fatal retinal vasculopathy with cerebral leukoencephalopathy and systemic manifestations (RVCLS) without any treatment options. Here, we report on a treatment of a RVCLS patient with anti-retroviral drugs and the janus kinase (JAK) inhibitor ruxolitinib. Methods: We collected clinical data of an extended family with RVCLS (TREX1 pVAL235Glyfs*6). Within this family we identified a 45-year-old woman as index patient that we treated experimentally for 5 years and prospectively collected clinical, laboratory and imaging data. Results: We report clinical details from 29 family members with 17 of them showing RVCLS symptoms. Treatment of the index patient with ruxolitinib for >4 years was well-tolerated and clinically stabilized RVCLS activity. Moreover, we noticed normalization of initially elevated CXCL10 mRNA in peripheral blood monocular cells (PBMCs) and a reduction of antinuclear autoantibodies. Discussion: We provide evidence that JAK inhibition as RVCLS treatment appears safe and could slow clinical worsening in symptomatic adults. These results encourage further use of JAK inhibitors in affected individuals together with monitoring of CXCL10 transcripts in PBMCs as useful biomarker of disease activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...